20 research outputs found

    Domains of analyticity of Lindstedt expansions of KAM tori in dissipative perturbations of Hamiltonian systems

    Full text link
    Many problems in Physics are described by dynamical systems that are conformally symplectic (e.g., mechanical systems with a friction proportional to the velocity, variational problems with a small discount or thermostated systems). Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We provide all details for maps, but we present also the modifications needed to obtain a direct proof for the case of differential equations. We consider a family of conformally symplectic maps fμ,ϵf_{\mu, \epsilon} defined on a 2d2d-dimensional symplectic manifold M\mathcal M with exact symplectic form Ω\Omega; we assume that fμ,ϵf_{\mu,\epsilon} satisfies fμ,ϵ∗Ω=λ(ϵ)Ωf_{\mu,\epsilon}^*\Omega=\lambda(\epsilon) \Omega. We assume that the family depends on a dd-dimensional parameter μ\mu (called drift) and also on a small scalar parameter ϵ\epsilon. Furthermore, we assume that the conformal factor λ\lambda depends on ϵ\epsilon, in such a way that for ϵ=0\epsilon=0 we have λ(0)=1\lambda(0)=1 (the symplectic case). We study the domains of analyticity in ϵ\epsilon near ϵ=0\epsilon=0 of perturbative expansions (Lindstedt series) of the parameterization of the quasi--periodic orbits of frequency ω\omega (assumed to be Diophantine) and of the parameter μ\mu. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the Lindstedt series are analytic in a domain in the complex ϵ\epsilon plane, which is obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin

    Whiskered KAM tori of conformally symplectic systems

    Get PDF
    We investigate the existence of whiskered tori in some dissipative systems, called \sl conformally symplectic \rm systems, having the property that they transform the symplectic form into a multiple of itself. We consider a family fμf_\mu of conformally symplectic maps which depend on a drift parameter μ\mu. We fix a Diophantine frequency of the torus and we assume to have a drift μ0\mu_0 and an embedding of the torus K0K_0, which satisfy approximately the invariance equation fμ0∘K0−K0∘Tωf_{\mu_0} \circ K_0 - K_0 \circ T_\omega (where TωT_\omega denotes the shift by ω\omega). We also assume to have a splitting of the tangent space at the range of K0K_0 into three bundles. We assume that the bundles are approximately invariant under Dfμ0D f_{\mu_0} and that the derivative satisfies some "rate conditions". Under suitable non-degeneracy conditions, we prove that there exists μ∞\mu_\infty, K∞K_\infty and splittings, close to the original ones, invariant under fμ∞f_{\mu_\infty}. The proof provides an efficient algorithm to construct whiskered tori. Full details of the statements and proofs are given in [CCdlL18].Comment: 15 pages, 1 figur

    KAM theory for conformally symplectic systems

    Get PDF
    We present a KAM theory for some dissipative systems (geometrically, these are conformally symplectic systems, i.e. systems that transform a symplectic form into a multiple of itself). For systems with n degrees of freedom depending on n parameters we show that it is possible to find solutions with n-dimensional (Diophantine) frequencies by adjusting the parameters. We do not assume that the system is close to integrable, but we use an a-posteriori format. Our unknowns are a parameterization of the solution and a parameter. We show that if there is a sufficiently approximate solution of the invariance equation, which also satisfies some explicit non-degeneracy conditions, then there is a true solution nearby. We present results both in Sobolev norms and in analytic norms. The a-posteriori format has several consequences: A) smooth dependence on the parameters, including the singular limit of zero dissipation; B) estimates on the measure of parameters covered by quasi-periodic solutions; C) convergence of perturbative expansions in analytic systems; D) bootstrap of regularity (i.e., that all tori which are smooth enough are analytic if the map is analytic); E) a numerically efficient criterion for the break-down of the quasi-periodic solutions. The proof is based on an iterative quadratically convergent method and on suitable estimates on the (analytical and Sobolev) norms of the approximate solution. The iterative step takes advantage of some geometric identities, which give a very useful coordinate system in the neighborhood of invariant (or approximately invariant) tori. This system of coordinates has several other uses: A) it shows that for dissipative conformally symplectic systems the quasi-periodic solutions are attractors, B) it leads to efficient algorithms, which have been implemented elsewhere. Details of the proof are given mainly for maps, but we also explain the slight modifications needed for flows and we devote the appendix to present explicit algorithms for flows

    KAM quasi-periodic solutions for the dissipative standard map

    No full text
    We present results towards a constructive approach to show the existence of quasiperiodic solutions in non-perturbative regimes of some dissipative systems, called conformally symplectic systems. Finding a quasi-periodic solution of conformally symplectic systems with fixed frequency requires to choose a parameter, called the drift parameter.The first step of the strategy is to establish a very explicit quantitative theorem in an a-posteriori format as in Calleja et al. (2013). A-posteriori theorems show that if we can find an approximate solution of an invariance equation, which is sufficiently approximate with respect to some condition numbers (algebraic expressions of derivatives of the approximate solution and estimates on the derivatives of the map), then there is a true solution.The second step in the strategy is to produce numerically a very accurate solution of the invariance equation (discretizations with 2(18) Fourier coefficients, each one computed with 100 digits of precision).The third step is to compute in a concrete example, the dissipative standard map, the condition numbers and verify numerically the conditions of the theorem in the approximate solutions. For some families which have been studied numerically, the results agree with three figures with the best numerical values. We point out however that the numerical methods developed here work also in examples which have not been accessible to other more conventional methods.The verification of the estimates presented here is not completely rigorous, since we do not control the round-off error, nor the truncation error of several operations in Fourier space. We hope that the positive step taken in this paper will stimulate the complete computer-assisted proof. Making explicit the condition numbers and verifying the conditions (even in an incomplete way) will be valuable for the computation close to breakdown.We make available the approximate solutions, the highly efficient algorithm (quadratic convergence, low storage requirements, low operation count per step) to compute them (incorporating high precision based on the MPFR library) and the routines used to verify the applicability of the theorem

    KAM theory for conformally symplectic systems

    No full text
    We present a KAM theory for some dissipative systems (geometrically, these are conformally symplectic systems, i.e. systems that transform a symplectic form into a multiple of itself). For systems with n degrees of freedom depending on n parameters we show that it is possible to find solutions with n-dimensional (Diophantine) frequencies by adjusting the parameters. We do not assume that the system is close to integrable, but we use an a-posteriori format. Our unknowns are a parameterization of the solution and a parameter. We show that if there is a sufficiently approximate solution of the invariance equation, which also satisfies some explicit non–degeneracy conditions, then there is a true solution nearby. We present results both in Sobolev norms and in analytic norms. The a–posteriori format has several consequences: A) smooth dependence on the parameters, including the singular limit of zero dissipation; B) estimates on the measure of parameters covered by quasi–periodic solutions; C) convergence of perturbative expansions in analytic systems; D) bootstrap of regularity (i.e., that all tori which are smooth enough are analytic if the map is analytic); E) a numerically efficient criterion for the break–down of the quasi–periodic solutions. The proof is based on an iterative quadratically convergent method and on suitable estimates on the (analytical and Sobolev) norms of the approximate solution. The iterative step takes advantage of some geometric identities, which give a very useful coordinate system in the neighborhood of invariant (or approximately invariant) tori. This system of coordinates has several other uses: A) it shows that for dissipative conformally symplectic systems the quasi–periodic solutions are attractors, B) it leads to efficient algorithms, which have been implemented elsewhere. Details of the proof are given mainly for maps, but we also explain the slight modifications needed for flows and we devote the appendix to present explicit algorithms for flows

    Response Solutions for Quasi-Periodically Forced, Dissipative Wave Equations

    No full text
    We consider several models of nonlinear wave equations subject to very strong damping and quasi-periodic external forcing. This is a singular perturbation, since the damping is not the highest order term or it creates multiple time scales. We study the existence of response solutions (i.e., quasi-periodic solutions with the same frequency as the forcing). Under very general non-resonance conditions on the frequency, we show the existence of asymptotic expansions of the response solution; moreover, we prove that the response solution indeed exists and depends analytically on arepsilonarepsilon (where arepsilonarepsilon is the inverse of the coefficient multiplying the damping) for arepsilonarepsilon in a complex domain, which in some cases includes disks tangent to the imaginary axis at the origin. In other models, we prove analyticity in cones of aperture pi/2pi/2 and we conjecture it is optimal. These results have consequences for the asymptotic expansions of the response solutions considered in the literature. The proof of our results relies on reformulating the problem as a fixed point problem in appropriate spaces of smooth functions, constructing an approximate solution, and studying the properties of iterations that converge to the solutions of the fixed point problem. In particular we do not use dynamical properties of the models, so the method applies even to ill-posed equations
    corecore